ORIGINAL ARTICLE
Year : 2012  |  Volume : 11  |  Issue : 2  |  Page : 136-143

Antimicrobial, anti-inflammatory, and antinociceptive activities of triazole, pyrazole, oxadiazine, oxadiazole, and sugar hydrazone-5-nitroindoline-2-one derivatives and a study of their computational chemistry ( part II)


1 Department of Chemistry of Natural and Microbial Products; Pharmaceutical Research Group, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Egypt
2 Department of Chemistry of Natural and Microbial Products, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Egypt
3 Department Plant Pathology and Department of Safe of Agriculture, Pharmaceutical Research Group, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Egypt
4 Department of Pharmacology, Theodor Bilharz Research Institute, Giza, Egypt
5 Department of Nuclear Physics, Atomic and Molecular Physics Unit, Atomic Energy Authority, Cairo, Egypt
6 Department of Analytical Chemistry, Stockholm University, Stockholm, Sweden

Correspondence Address:
Fatma A. Bassyouni
PhD, Department of Chemistry of Natural and Microbial Products, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, 12311 Cairo
Egypt
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.7123/01.EPJ.0000422114.91245.38

Rights and Permissions

Objective

The aim of this study (part II) is to evaluate the antibacterial, anti-inflammatory, and antinociceptive activities of a series of 1H-1,2,4-triazol-3-yl)phenylimino)(methylbenzyl)-5-nitroindolin-2-ones, 1H-pyrazole-1-carbonyl)phenylimino)-1-(p-methylbenzyl)-5-nitroindolin-2-ones, 3-(4-(1,3,4-oxadizine-6-one)phenylimino)-1-(p-methylbenzyl)-5-nitroindolin-2-ones, 1,3,4-oxadiazol-2-yl)phenylimino)-1-(p-methylbenzyl)-5-nitroindolin-2-ones and 4-(-1-(p-methylbenzyl)-5-nitro-2-oxoindolin-3-ylideneamino) sugar hydrazone derivatives (1–13) and, in addition, to investigate their computational chemistry.

Methods

The synthesized compounds in (part I) 1–9 were evaluated for their antibacterial and antifungal activities using different strains of Gram-positive bacteria (Bacillus subtilis), Gram-negative bacteria (Pseudomonas aeruginosa), yeast (Candida albicans), and four mold fungi (Fusarium solani, Aspergillus niger, Colletotrichum gloeosporioides, and Phomopsis obscurans). The anti-inflammatory and antinociceptive activities of compounds 1–13 were evaluated using a hot-plate test, acetic acid-induced writhing in mice, formalin-induced nociception, a tail immersion test, and carrageenan-induced hind paw edema. For computational chemistry, a semiempirical MNDO method (Modified Neglect of Differential Overlap is a semi-empirical method for the quantum calculation of molecular electronic structure in computational chemistry) associated with HyperChem professional 7.5 programs was adapted.

Results and conclusion

Compounds 4-[(1-(p-methylbenzyl)-5-nitro-2-oxoindolin-3-ylideneamino)] benzohydrazide (3) and 3-(4-(5-methyl-1,3,4-oxadiazol-2-yl)phenylimino)-1-(p-methylbenzyl)-5-nitroindolin-2-one (9) showed the highest antibacterial and antifungal activities compared with clotrimazole and sulfamethoxazole as reference drugs. In contrast, compounds ethyl 4-(5-nitro-2-oxoindolin-3-ylideneamino) benzoate (1), 3-(4-(3-methyl-5-oxo-4,5-dihydro-1H-pyrazole-1-carbonyl) phenylimino)-1-(p-methylbenzyl)-5-nitroindolin-2-one (8), D-glucose-4-(-1-(p-methylbenzyl)-5-nitro-2-oxoindolin-3-ylideneamino) hydrazone derivative (10), and D-arabinose-4-(-1-(p-methylbenzyl)-5-nitro-2-oxoindolin-3-ylideneamino) hydrazone derivative (12) showed significantly high anti-inflammatory and antinociceptive activities when compared with indomethacin and morphine as reference drugs. From the computational chemistry compounds, ethyl 4-(5-nitro-2-oxoindolin-3-ylideneamino) benzoate (1), ethyl 4-[(1-(p-methylbenzyl)-5-nitro-2-oxoindolin-3-ylideneamino)] benzoate (2), and 4-[(1-(p-methylbenzyl)-5-nitro-2-oxoindolin-3-ylideneamino)] benzohydrazide (3) yielded the lowest values of total energy and heat of formation, and had higher stability than other molecules.



[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1100    
    Printed49    
    Emailed0    
    PDF Downloaded188    
    Comments [Add]    

Recommend this journal