ORIGINAL ARTICLE
Year : 2013  |  Volume : 12  |  Issue : 1  |  Page : 83-89

Optimization of growth conditions and continuous production of inulinase using immobilized Aspergillus niger cells


1 Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical Industries, National Research Centre, Cairo, Egypt
2 Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical Industries, National Research Centre, Cairo, Egypt ; Department of Biochemistry, Faculty of Girls Science, King Abdulaziz University Jeddah, Saudi Arabia

Correspondence Address:
Nagwa A. Atwa
PhD, Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical Industries, National Research Centre, El-Behoos St. 33, Dokki, Cairo 12622, Egypt

Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.7123/01.EPJ.0000428964.32893.44

Rights and Permissions

Aim

The aim of the study was the optimization of growth conditions for the production of inulinase as well as the continuous production of the enzyme in an airlift bioreactor using Aspergillus niger cells.

Methods

First, inulinase production by A. niger cells, using different carbon and nitrogen sources, was studied on a shake flask level. Second, the cells were adsorbed onto different carriers, and their production over several successive batches was tested. Finally, the economically-favorable continuous production of inulinase by A. niger cells immobilized onto linen fibers was carried out in an airlift bioreactor using crude inulin juice as the fermentation medium.

Results

Although all tested substances resulted in the biosynthesis of certain amounts of inulinase enzyme, the highest titer of 163.5 U/ml was obtained when the producing cells were incubated for 96 h at 27πC and 180 rpm in a fermentation medium containing both inulin and peptone as sole carbon and nitrogen sources, respectively. Moreover, when the cells of the tested microorganism were adsorbed onto different carriers, especially linen fibers, their productivity was also successfully maintained, to different extents, for five successive batches. However, as commercially pure inulin is very expensive and available in only small quantities, the fermentation medium was later substituted by a crude inulin extract obtained by mechanical crushing and filtration of Jerusalem artichoke tubers. The crude inulin juice was able to sustain inulinase production during the second batch cultivation of A. niger cells that were immobilized by their adsorption onto linen fibers to a satisfactory level of about 122 U/ml. Furthermore, the use of the previously mentioned crude inulin preparation was also compared with the use of either complete or minimal media, composed solely of 1% pure inulin, for the continuous production of inulinase enzyme by A. niger cells that were immobilized in their maximum production phase and packed inside an external loop airlift bioreactor. The results of this experiment were very encouraging as, using this technique, an inulinase production of about 838 U/ml over an incubation period of 48 h was obtained compared with a production of about 996 and 1013 U/ml, which resulted from the use of either minimized or complete media, respectively, for the same incubation period.

Conclusion

The method adopted in this study for inulinase production is simple, economic, time saving, and nontoxic to the microorganism. Moreover, the loaded linen fiber pads are reusable.



[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1027    
    Printed47    
    Emailed0    
    PDF Downloaded123    
    Comments [Add]    

Recommend this journal