ORIGINAL ARTICLE
Year : 2015  |  Volume : 14  |  Issue : 2  |  Page : 103-108

Comparison of enhancement of transdermal permeability of Carvedilol through physical and chemical methods


1 Department of Pharmacy, JNTU, Kukatpally, Hyderabad, Andhra Pradesh; Department of Pharmaceutics, Vaagdevi College of Pharmacy, Hanamkonda, Telangana, India
2 Department of Pharmaceutics, Vaagdevi College of Pharmacy, Hanamkonda, Telangana, India

Correspondence Address:
Yamsani M Rao
Department of Pharmaceutics, Vaagdevi College of Pharmacy, Hanamkonda, Warangal, 506001, Telangana
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1687-4315.161282

Rights and Permissions

Background The aim of the study was to overcome the difficulties raised in oral therapy; there is a need for the development of new drug delivery system that will improve the therapeutic efficacy. Because of its low dose and extensive hepatic metabolism, Carvedilol is a suitable candidate for transdermal administration. Objective The ultimate aim of this study was to administer Carvedilol through a transdermal patch and to evaluate by chemical method and iontophoresis by means of in-vitro drug release and ex-vivo permeation studies. Materials and methods The matrix type transdermal patches were prepared by solvent evaporation technique. Various formulations composed of hydroxypropyl methylcellulose (HPMC E15), Eudragit (ERL 100) in different ratios were prepared. All formulations consist of 15% v/w of dibutyl phthalate as plasticizer. Results and conclusion The prepared patches were characterized for various physicochemical parameters. The penetration-enhancing mechanism of iontophoresis was found to increase solvent flow through electro-osmosis and pore enlargement in the skin barrier, together with enhancement of electrochemical potential difference across the skin. The effect of chemical enhancer d-limonene and iontophoretic transdermal transport of drug using a current density of 1 mA/cm 2 was investigated. Increasing the applied current density from 0.5 to 1 mA/cm 2 resulted in a 2.2-fold increase in iontophoretic flux. Results demonstrated that iontophoresis exhibited a great ability to enhance the flux of drug in comparison with the chemical method. The optimized formulations F2 and F3 containing 8% d-limonene as chemical enhancer showed maximum skin permeation, 979.45 ± 3.16 and 900.57 ± 2.8 μg/cm 2 , respectively, whereas formulations F9 and F10 with iontophoresis showed the skin permeation, 1048.7 ± 3.8 and 1476.7.7 ± 4.8 μg/cm 2 , respectively, and obtained flux greater than F2.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1526    
    Printed34    
    Emailed0    
    PDF Downloaded237    
    Comments [Add]    

Recommend this journal