ORIGINAL ARTICLE
Year : 2017  |  Volume : 16  |  Issue : 1  |  Page : 53-61

Assessment of some synthesized novel 9-substituted tetrahydroacridine derivatives in diabetic disease management in rats


1 Therapeutic Chemistry Department, National Research Center, Cairo, Egypt
2 Institute of Material Research and Technology University, Berlin, Germany

Correspondence Address:
Rehab M Abdel Megeed
Therapeutic Chemistry Department, National Research Center, El-Tahrir St., Dokki, Cairo 12622
Egypt
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1687-4315.205833

Rights and Permissions

Background and objective 9-Substituted 1,2,3,4-tetrahydroacridine derivatives, especially those bearing substituted aliphatic or aromatic amino groups at the position 9, have been widely used for treating some chronic diseases because of their role as acetylcholine esterase inhibitors. Therefore, some new substituted tetrahydroacridine derivatives were synthesized to investigate their efficiency as antidiabetic agents in vivo. Materials and methods Some new substituted tetrahydroacridine derivatives hybridized at their position 9 with nitrogen, oxygen, and/or sulfur heterocycles or sulfa drugs starting from the known intermediate compound 9-chlorotetrahydroacridine were synthesized. Biologically, these compounds were investigated for antidiabetic potentials using Wistar rats. Diabetes was induced using streptozotocin (45 mg/kg) and then biochemical assays and histopathological examinations were applied to assess the therapeutic efficiency and safety margins of these compounds. Results and discussion Biochemical and histopathological examinations demonstrated the efficiency and safety margins of these compounds in vivo. Different biochemical analyses and histopathological examinations were estimated in diabetic and treated groups as compared with the healthy one. Data listed in this study showed an acceptable improvement percentage in glucose level and α-amylase, liver function enzymes (glutamic pyruvic transaminase and glutamic oxaloacetic transaminase), and lipid profile (triglyceride, low-density lipoprotein, total cholesterol) parameters after treatment with new synthetic compounds. Histopathological examination showed regeneration of treated groups. 9-Sulfadiazine-tetrahydroacridine (9-SDTHA) derivative (2b) was the most safe and efficient compound. The superiority of this compound may be because of the presence of a pyrimidine ring, which is the main constituent of DNA and RNA structure. These compounds could be suggested as antidiabetic agents.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed123    
    Printed4    
    Emailed0    
    PDF Downloaded48    
    Comments [Add]    

Recommend this journal