ORIGINAL ARTICLE
Year : 2018  |  Volume : 17  |  Issue : 3  |  Page : 218-222

Antimicrobial effects of wasp (Vespa orientalis) venom


1 Department of Honey Bee Research, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
2 Department of Quality Control, Foods Technology Institute, Agricultural Research Center, Giza, Egypt

Correspondence Address:
Dr. Rasha Farag
Department of Honey Bee, Plant Protection Research Institute, Agricultural Research Center, Giza 12611
Egypt
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/epj.epj_39_18

Rights and Permissions

Background and objective The discovery of novel naturally occurring antimicrobial agents is one of the most promising approaches for overcoming the growing threat of antibiotic-resistant pathogens. Venomous animals from different ecological niches and taxonomic groups have recently gained attention in the search for new antimicrobials to treat infectious diseases. Therefore, the main aim of the present study was to investigate the antimicrobial activity of Orient hornet venom. Materials and methods Different concentrations of wasp venom were tested for their antimicrobial effect against two gram-negative bacteria (Salmonella typhimurium, Escherichia coli), two gram-positive bacteria (Bacillus cereus, Staphylococcus aureus), and one yeast like fungi (Candida albicans). The antimicrobial activity was analyzed using the well diffusion method, where zones of inhibition were used as indicators of antimicrobial activity. Results and conclusion The venom exhibited notable antimicrobial activity against all tested pathogens. Gram-positive bacterial strains were found to be more sensitive than both gram-negative bacterial strains and fungal strain. The highest inhibition zones were determined to be 24.3±1.9, 29.3±1.5, 17.3±1.8, 14.0±1.7, and 15.7±1.5 mm for S. aureus, B. cereus, S. typhimurium, E. coli, and C. albicans, respectively. The corresponding minimum inhibitory concentration values were determined to be 0.32, 0.16, 0.625, 1.25, and 0.625 mg/ml, respectively. These results offer insights into the antimicrobial potency of wasp venom and provide a basis for further pharmacological research.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed118    
    Printed4    
    Emailed0    
    PDF Downloaded31    
    Comments [Add]    

Recommend this journal