Egyptian Pharmaceutical Journal

ORIGINAL ARTICLE
Year
: 2019  |  Volume : 18  |  Issue : 4  |  Page : 320--331

Biosynthesis of biologically active chitinase utilizing some Egyptian chitinaceous wastes and the properties of the synthesized enzyme


Heba M Shalaby1, Salah A Abo-Sdera2, Saadia M Easa3, Abdel-Mohsen S Ismail1 
1 Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Researches Division, National Research Centre, Cairo, Egypt
2 Agricultural Microbiology, National Rearsech Center, Cairo, Egypt
3 Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt

Correspondence Address:
MSc Heba M Shalaby
Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza 12622
Egypt

Background and objective Chitin-degrading enzymes have an utmost practical importance in many fields such as medicine, agriculture, and industry. These enzymes are used as effective antibacterial, antifungal, antihypertensive, and antioxidant agents and also as excellent food quality enhancers. The objective of the present article was to formulate the production medium and to pinpoint the proper growth conditions for the chosen microorganism producing highly active chitinase enzymes. The general properties of the crude enzyme preparation were determined to define the proper conditions for enzyme action. Under the specified conditions, the capability of the enzyme preparation for antimicrobial and antioxidant activities were decided. Materials and methods Eighteen recommended microbial strains were screened for biologically active chitinolytic enzymes productivity. Chitinase enzyme was determined, and also the important properties of the crude chitinase were duly pinpointed. Finally, biological activities of the crude enzyme were studied. Results and conclusion and conclusion Among all the 18 organisms, Streptomyces halstedii H2 was the most potent producer of an influential chitinase enzyme. The maximum chitinase activity of 49.5 U/ml was obtained from medium contains glucose 6 g/l, ammonium nitrate (0.9 g/l), and urea (0.64 g/l) at 30°C and pH 9.0. The important properties of the streptomycetal chitinase were duly pinpointed as follows: optimum enzyme and substrate concentrations were 1.6 mg/ml and 1.4% (w/v), respectively, and optimum reaction pH and temperature were 7.2 and 45°C, respectively. The crude preparation was stable for 60 min at pH 7.2 and 30°C and retained 92.6% of the original activity. Under the specified conditions, at varying concentrations, the enzyme preparation exhibited considerable 2, 2-diphenyl-1-picrylhydrazyl radical scavenging activity accompanied with low antimicrobial activity, pointing out the partial purification necessity of the crude enzyme preparation.


How to cite this article:
Shalaby HM, Abo-Sdera SA, Easa SM, Ismail AMS. Biosynthesis of biologically active chitinase utilizing some Egyptian chitinaceous wastes and the properties of the synthesized enzyme.Egypt Pharmaceut J 2019;18:320-331


How to cite this URL:
Shalaby HM, Abo-Sdera SA, Easa SM, Ismail AMS. Biosynthesis of biologically active chitinase utilizing some Egyptian chitinaceous wastes and the properties of the synthesized enzyme. Egypt Pharmaceut J [serial online] 2019 [cited 2020 Apr 1 ];18:320-331
Available from: http://www.epj.eg.net/article.asp?issn=1687-4315;year=2019;volume=18;issue=4;spage=320;epage=331;aulast=Shalaby;type=0