Export selected to
Reference Manager
Medlars Format
RefWorks Format
BibTex Format
  Most popular articles (Since )

  Archives   Most popular articles   Most cited articles
Hide all abstracts  Show selected abstracts  Export selected to
  Viewed PDF Cited
Structure and physicochemical properties in relation to drug action
Mohsen M Kamel, Yasmin M Syam
July-December 2013, 12(2):95-108
In this review, classification of drugs, chemical structure, and biological activity, examples of pharmacological activities of some structural moieties, bioisosterism, physicochemical properties in relation to drug action, drug-receptor theory, acid-base chemistry in formulation and biodistribution of the drug, quantitative structure-activity relationship, and molecular docking are briefly presented with examples.
  19,984 4,121 -
Isolation and microbiological identification of bacterial contaminants in food and household surfaces: How to deal safely
Amal S Othman
January-April 2015, 14(1):50-55
Objective This study investigates and reveals the relationship between pathogenic bacteria in some types of food and that present in different household sites (kitchens) and determines an effective disinfecting method to eliminate bacteria from common kitchen locations, some of which could be harmful or pathogenic. Materials and methods A total of 90 samples were collected; 85 samples were taken from different sites from five home kitchens and five samples were collected from different types of food. Samples were obtained (before and after disinfection) from kitchen towels, cooking gas stove knobs, refrigerator handles, water taps, and kitchen sponges used for washing utensils by using sterile cotton swabs. Bacteria were identified according to the conventional biochemical methods. DNA fragmentation was done to show the effect of disinfectants on the most common bacteria. Results and conclusion Escherichia coli , Klebsiella spp., and Staphylococcus aureus were the most abundant bacteria in the isolates. After disinfection using disinfectants containing sodium perborate and sodium silicate (detergent), sodium hypochlorite (Clorox), 5% amphoteric surfactant and chlorine (dishwashing powder), and Dettol, the samples were free of bacterial contamination. There was also a correlation between food contamination and bacteria isolated from the kitchens. As E. coli was the most highly abundant pathogen in the kitchen and was removed by the tested disinfectants, it was chosen for DNA fragmentation assay to examine the effect of the disinfectants on the bacterial DNA. Kitchen towels, cooking gas stove knobs, refrigerator handles, water taps, and kitchen sponges are the most common sites in kitchens that transmit pathogenic bacteria. They must be disinfected routinely after preparing food.
  7,902 756 2
Synthetic approaches and potential bioactivity of different functionalized quinazoline and quinazolinone scaffolds
Mohsen M Kamel, Wafaa A Zaghary, Reem I Al-Wabli, Manal M Anwar
September-December 2016, 15(3):98-131
Drug discovery and optimization constitutes one of the most important targets in medicinal chemistry. Because of their wide bioactivity spectra, nitrogen-containing heterocycles have received significant attention in many bio(organic) studies. The current review is a simple summary of different environmentally benign synthetic procedures that afford a variety of quinazoline and quinazolinone scaffolds with promising biological potential. The molecular modeling of various classes has also been discussed to elucidate the molecular reasons that led to the observed inhibition profile of different protein kinases, including which amino acids in their active sites would be involved in the anticipated bonding interactions. Furthermore, this article aims to investigate which classes deserve further development to get more specific and more potent quinazoline and quinazolinone candidates in various biological targets.
  2,802 2,766 -
Chemical composition and antimicrobial activity of volatile constituents from the roots, leaves, and seeds of Arctium lappa L. (Asteraceae) grown in Egypt
Elsayed A Aboutabl, Mona E El-Tantawy, Manal M Shams
July-December 2013, 12(2):173-176
Background and objective As no literature was traced dealing with the volatile constituents of the leaves or the seeds of Arctium lappa L., it was deemed of interest to carry out a gas chromatography/mass spectrometry (GC/MS) analysis and antimicrobial activity study of the volatile constituents of roots, leaves, and seeds of the plant grown in Egypt. Materials and methods The volatile constituents of the roots, leaves, and seeds were analyzed by GC/MS. The antimicrobial activity was tested using the agar well diffusion technique. Results and conclusion GC/MS of the volatile constituents from the leaves showed 19 identified compounds, the major being caryophyllene oxide (54.2%), followed by β-elemene (6.2%) and β-costol (4.0%). Analysis of the volatile constituents of the roots revealed 14 identified compounds, the major being caryophyllene oxide (51%), followed by aromadendrene (16%) and isoaromadendrene epoxide (6.4%). Analysis of the volatile constituents of the seeds revealed 22 identified compounds, the major being E-citral (28.8%), followed by geraniol (20.3%) and Z-citral (9.5%). The volatile constituents of the leaves and roots exhibited moderate antimicrobial activity against bacteria and significant antifungal activity, in comparison with the standards used, whereas the volatile constituents of the seeds showed moderate antimicrobial activity against bacteria and fungi.
  4,248 311 2
A glance on sweet shrub Stevia rebaudiana Bertoni
Sameer J Nadaf, Heena S Naikwadi
September-December 2015, 14(3):139-147
The sweet shrub Stevia rebaudiana Bertoni has been used throughout the world as a noncaloric biosweetener owing to its two major thermostable phytoconstituents - namely, stevioside and rebaudioside - which have recently been added to the European Union list of permitted sweeteners. A number of countries across the globe, such as Japan, China, Malaysia, Taiwan, Australia, Korea, etc., have approved the use of S. rebaudiana-based sweeteners in foods and beverages. However, several studies on this ancient plant have revealed many of its pharmacological properties, such as anticancer, antihypertensive, antibacterial, etc., and thus S. rebaudiana ought to be called a medicinal plant. As expected, in recent years, researchers have directed the focus toward S. rebaudiana and have been patenting their inventions. A number of review articles have been published on S. rebaudiana in relation to different aspects, but no one has reported on their patents published. Hence, it has become necessary to provide the up-to-date and collective information on studies conducted and patents on S. rebaudiana and its metabolites with respect to their commercial applications. A good number of patents and research articles have been published on S. rebaudiana. These patents and research articles of interest were divided on the basis of their pharmacological activity and pharmaceutical application, described and discussed below in this review article. Furthermore, the yearwise distribution of patents was presented as bar diagram.
  1,540 2,990 -
Synthesis, antifungal activity, and molecular docking study of some novel highly substituted 3-indolylthiophene derivatives
Heba M Abo-Salem, Eslam R El-Sawy, Ahmed Fathy, Adel H Mandour
July-December 2014, 13(2):71-86
Background and objectives The currently available antifungal drugs have the limitations of toxicity, potential drug interaction with other drugs, insufficient pharmacokinetics properties, and development of resistance. Thus, development of new antifungal agents with less toxicity is urgently required. The present work aimed to synthesize new 3-indolylthiophene derivatives and evaluate their antifungal activity by studying their molecular docking. Materials and methods New series of thiadiazoles 4a-c , morpholinyl-acetamides 6a-c , 4-methylpiperazinylacetamides 7a-c , thiazolidines 10a-c , azetidines 12a-c - 13a-c , sulfonamides 14a-c - 15a-c , benzamides 16a-c , pyrrolidines 17a-c , succinamic acids 18a-c , acetamides 19a-c , thieno(2,3-c)pyridines 20a-c , thieno(2,3-e)-1,2,4-triazolo(1,5-c)pyrimidines 23a-c , thieno(2,3-d) pyrimidines 24a-c - 26a-c , and thieno(2,3-b)pyridines 27a-c derivatives incorporated into N-substituted 3-indolylthiophenes were prepared by an initial reaction of 2-amino-4-(N-substituted-1H-indol-3-yl)thiophene-3-carbonitriles 1a-c with different reagents. The antifungal activity of the newly synthesized compounds was evaluated against two strains of fungi, namely, Candida albicans (ATCC-10231) and Aspergillus niger (ATCC-10535). However, the mode of action of the most promising antifungal compounds was assessed by docking with cytochrome P450 14 α-sterol demethylase (CYP51) (PDB ID: 1EA1). Results and conclusion Compound 4a showed good inhibitory activity against both C. albicans (ATCC-10231) and A. niger ( ATCC-10535), with minimum inhibitory concentrations values of 9 and 36 μg/disk, respectively, compared with fluconazole, with minimum inhibitory concentrations values of 8 and 34 μg/disk. Docking results showed that compound 4a had the highest docking score, with a binding energy of −30.25 kJ/mol, which is in agreement with the experimental activity value.
  1,692 2,645 4
Interpenetrating polymer network-based drug delivery systems: emerging applications and recent patents
Gupta Somya, Parvez Nayyar, Bhandari Akanksha, Sharma Pramod Kumar
May-August 2015, 14(2):75-86
Interpenetrating polymer network (IPN) systems use novel polymers that are synthesized by the interlacing of two independent polymers in a cross-linked form. For successful preparation of such IPN systems, at least one of the participating polymers should be synthesized/cross-linked in the immediate presence of the other. The polymers used to fabricate an IPN system are independently cross-linked or cross-linked to each other. They can be prepared by selective combination of the starting polymers to tailor the final product based on the ultimately desired characteristics. The nontoxic nature and biodegradability of natural polymers can thus be combined with the robustness and strength offered by the synthetic polymers by fabricating their IPN systems. The present review aims to summarize the IPN systems in terms of their advantages, disadvantages, and different drug delivery systems based on these polymers and their numerous biomedical applications. This review includes a detailed study of the recent publications and patents describing the use of IPNs in different spheres/formulations.
  3,499 458 -
Novel keratinase from marine Nocardiopsis dassonvillei NRC2aza exhibiting remarkable hide dehairing
Azza M Abdel-Fattah
July-December 2013, 12(2):142-147
Background The isolation of the locally marine Nocardiopsis dassonvillei NRC2aza was characterized by the exceptional dehairing properties of its subtilisin-like keratinase. Objectives The aim of this work was to extract keratinase enzyme from the marine Nocardiopsis dassonvillei NRC2aza to be an alternative to sodium sulphide, which is the major pollutant from tanneries. Its unique nonactivity on collagen enhances its industrial potential. Material and methods Fermentation of the marine isolate Nocardiopsis dassonvillei NRC2aza on whole-feather medium was performed for keratrinase enzyme production. Extraction of the enzyme was carried out by solid-state fermentation (SSF). Results and conclusion Nocardiopsis dassonvillei NRC2aza have excellent characteristics of crude keratinase, producing 1680 U/ml in a shaking submerged culture (SmF) and 19 760 U/g using SSF after 4 days at pH 7. The effect of inoculum concentration on SSF was studied, whereby higher concentrations (150-200%) lowered the activity. Fractional precipitation of the enzyme by ammonium sulphate produced four fractions, of which 70% was the most active and produced remarkable hide dehairing. A new locally isolated Streptomyces spp. from marine ecosystem produced a highly active keratinase enzyme that exhibits remarkable hide dehairing.
  3,380 252 2
Tropane alkaloids of Atropa belladonna L.: in vitro production and pharmacological profile
Hanan A Al-Ashaal, Mona E Aboutabl, Yousreya A Maklad, Ahmed A El-Beih
July-December 2013, 12(2):130-135
Objective The aim of the present work was to study the production of tropane alkaloids by in vitro cultures of Atropa belladonna L. and to evaluate the anticonvulsant, antinociceptive, motor incoordination, and antioxidant activities of both in vitro and original plant extracts. Background A. belladonna is a very important medicinal plant with multipurpose therapeutic effects. The yield of its alkaloid content is very low, which makes it difficult for industrial application. Materials and methods Murashige and Skoog media were used for callus and plant differentiation induction from leaf explants of A. belladonna L. Qualitative and quantitative analysis of alkaloids was carried out using high-performance liquid chromatography. The anticonvulsant activity was screened by the pentylenetetrazole seizure test. The antinociceptive activity was evaluated by adopting the writhing test, whereas motor incoordination was evaluated using the rotarod test. In addition, antioxidant activity was estimated using the 2,2'-diphenyl-1-picrylhydrazyl radical-scavenging test. Results Callus and differentiated plants were successfully induced in Murashige and Skoog media supplemented with growth regulators. High-performance liquid chromatography analysis revealed the production of higher concentrations of tropane alkaloids in differentiated plants than in the original plant. Anticonvulsant and antinociceptive activities, motor incoordination, and the antioxidant effect of callus extracts were much higher than those of the original plant leaf extract. Conclusion Plant tissue culture could be considered as an efficient and alternative source of continuous supply of tropane alkaloids with potent anticonvulsant, antinociceptive, motor incoordination, and antioxidant activities. It is also a powerful tool for producing A. belladonna strain with a high tropane alkaloid content.
  2,971 345 -
Formulation and evaluation of fast-dissolving films of lisinopril
Prabhakara Prabhu, Akhilesh Dubey, Karthik Kamath
January-April 2015, 14(1):56-64
Objective The aim of this study was to formulate and evaluate the oral fast-dissolving film of lisinopril for the effective management of hypertension and cardiac diseases. Materials and methods Fast-dissolving films were prepared by the solvent-casting method using a combination of different polymers, HPMC E5 LV, HPMC E 3 and HPMC 4KM, along with PEG as a plasticizer. The Fourier-transform infrared study for the drug-polymer interaction was carried out. Evaluation of physical parameters such as physical appearance, surface texture, uniformity of weight, uniformity of strip thickness, surface pH, folding endurance, uniformity of drug content and percentage of moisture absorption were performed. Kinetic data analysis for the release study and the stability study were also performed. Result and conclusion Results of uniformity of weight, thickness, folding endurance, surface pH, tensile strength, percentage drug content, swelling index, tensile strength and percentage elongation of all the films were found to be satisfactory with respect to variation of these parameters between films of same formulation. The Fourier-transform infrared study indicated that there was no interaction between the drug and the polymers. The in-vitro drug release study showed that a better rate of drug release was achieved by formulations FA3, FB1, FB4 FC8 and FD10 compared with other formulations. The stability study did not show any significant difference in the external appearance, the drug content and the in-vitro drug release. The ex-vivo study indicated that the drug has a better ability to cross the sublingual barrier at a faster rate, and hence the delivery system was found to be promising as it has the potential of overcoming the drawbacks associated with tablet formulations available in the market presently.
  2,894 365 -
Production and partial characterization of collagenase from marine Nocardiopsis dassonvillei NRC2aza using chitin wastes
Azza M Abdel-Fattah
July-December 2013, 12(2):109-114
Background The marine ecosystem has generated considerable interest for the isolation of new microorganisms, especially Streptomyces spp. It is considered a cheaper source of precious enzymes such as collagenase. Objective This study aimed to produce new collagenase enzymes from the locally isolated marine Streptomyces spp. grown on marine wastes for application in industrial fields. Materials and methods The marine isolate was identified as Nocardiopsis dassonvillei NRC2aza by 16S rDNA sequencing. N. dassonvillei NRC2aza was grown on basal medium composed of whole chitin wastes as the sole C and N source for the production of collagenase enzyme. Extraction of the enzyme was performed to study its characteristics. Results and conclusion Maximum collagenase activity (240 U/ml) was obtained after 6 days of incubation in shaken liquid cultures when whole chitin wastes (shrimp and crab wastes) were used as the sole nitrogen and carbon source. A N. dassonvillei NRC2aza isolate was shown to produce significant amounts of collagenase, reaching 1872 U/g, under solid-state fermentation using a mixture of 10 g chitin waste and 2 g of feather. Successive ammonium sulfate fractionation of N. dassonvillei NRC2aza growth extract produced a group of collagenases with different molecular weights. The 80% enzyme fraction was the most active and possessed the highest collagenase activity (1106.66 U/f), reaching about 3.8-fold that of the culture filtrate. The optimum pH and temperature were 8 and 55°C, respectively, and the enzyme was stable at pH range of 6-8. The collagenase exhibited heat stability for 60 min at 50°C. Therefore, collagenases can be applied in food industry as tenderizers of red meat and in fur and hide tanning to ensure uniform dyeing of leather.
  2,095 960 2
Safety evaluation of needle-like hydroxyapatite nanoparticles in female rats
Azza I. Hafez, Fatma Hafez, Maaly Khedr, Omayma Ibrahim, Rania Sabry, Mossad A. Abdel-Wahhab
December 2012, 11(2):67-72

The present study was designed to evaluate the safety of synthesized needle-like hydroxyapatite (HAp) nanoparticles ranging from 3 to 7 nm in diameter and from 27 to 46 nm in length when administered in female rats orally or subcutaneously at different concentrations.


Animals in different treatment groups were maintained on their respective diets as follows: group 1, untreated control; group 2, treated orally with HAp (300 mg/kg body weight) for 3 weeks; group 3, treated orally with a low dose of HAp (150 mg/kg body weight) for 3 weeks; and group 4, implanted subcutaneously with HAp (600 mg/kg body weight) once and left for 5 weeks. At the end of the experimentation period, blood samples were collected from all animals for biochemical analysis (alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, uric acid, urea, and creatinine). After sacrifice, histopathological examination of the liver and kidney was carried out.

Results and conclusion

The biochemical results showed an increase in alanine aminotransferase and aspartate aminotransferase in the groups treated orally and those treated subcutaneously. There was an increase in alkaline phosphatase only in the group receiving the high oral dose; however, animals treated with the low dose or those treated subcutaneously were comparable with the control group. All the rats showed normal kidney function because of normal levels of creatinine, urea, and uric acid. The histopathological results indicated that the liver and kidney of all rats treated with HAp (oral or subcutaneously) had a normal structure. The previous results confirmed the safety of the synthesized nanoneedle HAp when administered orally or subcutaneously at the suggested dose.

  908 2,137 -
Levofloxacin: formulation and in-vitro evaluation of alginate and chitosan nanospheres
Ramadoss Arun Balaji, Sathya Raghunathan, Radhakrishnan Revathy
January-April 2015, 14(1):30-35
Background and objectives Levofloxacin, the active l-isomer of ofloxacin, is a widely used fluoroquinolone, with activity against bacteria that causes respiratory, skin, and genitourinary tract infections, (-)-(S)-9-fluoro-2,3-dihydro-3-methyl-10-(4-methyl-1-piperazinyl)-7-oxo-7H-pyrido benzoxazine-6-carboxylic acid hemihydrates. It is a new quinolone antimicrobial agent that exhibits broad-spectrum in-vitro bactericidal activities against gram-positive and gram-negative aerobes. The aim of this study was to formulate sodium alginate nanospheres containing levofloxacin and evaluate its physiochemical properties, exploring alternative routes of administration, such as nanoparticle to develop a targeted drug delivery system and to act locally on the organ of infection with enriched therapeutic efficacy. Materials and methods Sodium alginate and calcium chloride solutions were prepared. A constant volume (20 μl) of levofloxacin solution was incorporated into the sodium alginate solution, and then the same method was followed for the preparation of hybrid chitosan-alginate nanoparticles. In-vitro release study was carried out by dialysis membrane for 7 h in the physiological fluid (pH 7.4 phosphate buffer solution). Morphology and structure characterization of nanoparticles were investigated by field emission scanning electron microscope and Fourier transform infrared spectra, zeta potential, X-ray diffraction, particle size analysis, respectively. Results and conclusion This paper reports the possibility to entrap lipophilic levofloxacin within chitosan/alginate (CS/ALG) nanoparticles using a very simple ionotropic pregelation technique; strong electrostatic interactions exist in the nanoparticles. The nanoparticles with a diameter of 25-55 nm were obtained at the optimal mass range of sodium alginate: calcium chloride:chitosan in the meta acid environment. The delivery behavior of levofloxacin from nanoparticles was studied. Levofloxacin released from chitosan-alginate nanoparticles was 71% at pH 7.4 within 7 h. The release profile was characterized by an initial burst effect in phosphate buffer solution, followed by a continuous and controlled release phase. The drug release mechanism from polymer also offers an interesting potential for the delivery of lipophilic compound.
  2,411 450 5
Microspheres based on herbal actives: the less-explored ways of disease treatment
Somya Gupta, Nayyar Parvez, Akanksha Bhandari, Pramod K Sharma
September-December 2015, 14(3):148-157
In recent years, focus has been directed towards the development of drug delivery system using biologically active compounds derived from the natural sources. These formulations based on natural products have been reported to have significant activity and are advantageous over the conventional formulations in terms of solubility, enhanced bioavailability, increased pharmacological activity, stability and fewer side effects. Nowadays, people are switching to the natural products over synthetic compounds, which can be easily obtained from the locally available plants and can help in reducing public health costs. The present review aimed at highlighting the development of microspheres based on herbal actives formulations, in which biologically active compounds are delivered to the targeted site. It also summarizes the method of preparation, therapeutic activity and application of herbal formulations in various biomedical fields.
  1,995 795 -
Hunting for renal protective phytoconstituents in Artemisia judaica L. and Chrysanthemum coronarium L. (Asteraceae)
Howaida I Abd-Alla, Hanan F Aly, Nagwa M. M. Shalaby, Marzougah A Albalawy, Elsayed A Aboutabl
January-June 2014, 13(1):46-57
Aim This study aimed to evaluate the potential renal protective activity of Artemisia judaica L. and Chrysanthemum coronarium L., belonging to family Asteraceae, collected in Mountains of Tabuk, Kingdom of Saudi Arabia. The ameliorative role of petroleum ether, ethyl acetate, and methanol successive extracts thereof on renal hyperlipidemic and hyperglycemic rats was studied. Active compounds isolated from the bioactive ethyl acetate extract of A. judaica were characterized and identified. Material and methods Hyperlipidemia and hyperglycemia were induced in rats. Evaluation of renal protection was carried out through determination of kidney biochemical markers and histopathological examination. Kidney disorder biomarkers (creatinine and total urea) as well as kidney marker enzyme (glyceraldehyde-3-phosphate dehydrogenase) activity were evaluated. Oxidant-antioxidant status in kidney was assessed by determination of glutathione, lipid peroxide, and nitric oxide. The free radical scavenging activity was performed using 1,1-diphenyl-2-picrylhydrazyl. The extract exhibiting the most significant bioactivity was investigated for its phytoconstituents. Results and conclusion Treatment with A. judaica successive extracts, in particular ethyl acetate, effectively ameliorated diabetic renal dysfunction more than those of C. coronarium. The results revealed improvement in all the investigated parameters, which was confirmed by kidney histopathological analysis. Phytochemicals in the most promising extract (ethyl acetate extract of aerial parts of A. judaica) were isolated and characterized through their physical, chemical, chromatographic, and spectral analyses (UV, MS, 1 H NMR, and 13 C NMR). One sesquiterpene lactone, vulgarin ( 1 ); three triterpenes, taraxerol acetate ( 2 ), β-amyrin ( 3 ), and lupeol ( 4 ); a phytosterol, β-sitosterol ( 5 ); and four flavonoids, lutoelin-3’-methyl ether ( 6 ) and its glycoside, luteolin 3’-methyl ether-7-glucoside ( 7 ), luteolin-6,7,4’-trimethyl ether ( 8 ), and artemetin ( 9 ), were identified. All compounds are reported for the first time in the investigated plant except 1 , 6 , and 7 . The bioactivity may be attributed to the terpenoidal and flavonoidal compounds.
  2,481 275 2
Study of some biological activities of aqueous extract of ginger (Zingiber officinale)
Mohamed MI Helal, Mona Y Osman, Madeha OI Ghobashy, Wafaa A Helmy
July-December 2014, 13(2):144-150
Purpose This study was designed to evaluate the potential of two aqueous extracts of ginger rhizome under different extraction conditions (cold and hot water). Materials and methods Anticoagulant, fibrinolytic, antimicrobial, prebiotic, and antitumor activities were examined for the two aqueous extracts. The two aqueous extracts were then used for evaluation of yield, total carbohydrates, protein, and monosaccharide contents. The sulfation of crude extracts was carried out by chlorosulfonic acid as a sulfating agent in formamide. Results The results showed that sulfation modification of the two aqueous extracts increased significantly both the anticoagulation and the fibrinolytic activities, but did not affect the antimicrobial, prebiotic, or antitumor activities. However, the two native water extracts showed antibacterial activity against Escherichia coli only, but not for Staphylococcus aureus, and antifungal activity against Candida albicans. Conclusion The chemical modification of the two aqueous extracts of ginger by sulfation will increase significantly its anticoagulation and fibrinolytic activities while not affecting or improving the prebiotic and antimicrobial activities. However, the antitumor activity is high for both the native and the sulfated aqueous extracts of ginger. Thus, this result does not mean that the sulfation modification of the water extracts studied affected the antitumor activity.
  2,392 344 2
A pharmacognostical study of Vernonia cinerea Less (Asteraceae) and evaluation of anti-inflammatory and antibacterial activities of stem
Anupama Singh, Vikas A Saharan, Indar C Kumawat, Abhishek Khatri, Anil Bhandari
July-December 2014, 13(2):104-112
Aim This study aimed to establish the pharmacognostical characteristics of leaf, stem and root of Vernonia cinerea, Asteraceae (ash-coloured fleabane), and to verify the anti-inflammatory and antibacterial activities of various extracts of the stem. Background V. cinerea (Asteraceae) is traditionally used to treat inflammation, diarrhoea, cough, smoking cessation, asthma, Parkinson's disease and leprosy. Materials and methods Leaf, stem and root and their powders were examined microscopically, and pharmacognostic standardization parameters were determined according to WHO guidelines. Extracts of different organs of the plant in petroleum ether, chloroform, ethanol, ethanol (50%) and water were prepared and examined by thin-layer chromatography. An antibacterial assay of the stem extracts for Staphylococcus aureus was performed. The anti-inflammatory activity of the same extracts was studied using a carrageenan-induced paw oedema model in Wistar rats. Results and conclusion Microscopic characterization of the different organs of the plant indicated the presence of trichomes, arrangement of vascular bundles (stem: radial, root: scattered), anomocytic and diacytic stomata, and wavy epidermal cells in stomata. The antibacterial assay indicated a zone of inhibition of 20 ± 0 and 19.33 ± 0.33 mm with alcoholic and chloroform extracts of V. cinerea leaf, respectively (extracts of stem showed a zone of inhibition of 21.00 ± 0.57 and 21.00 ± 0.57 mm, respectively). Diclofenac sodium and chloroform extract showed 11.11% inhibition of inflammation, whereas 16.66 and 13.33% inhibition were observed with alcoholic and hydroalcoholic extracts, respectively. Microscopic and pharmacognostic parameters aid in the identification and characterization of different organs of the plant. Traditional claims of antimicrobial and anti-inflammatory activities of the stem have been verified. Various extracts showed significant results for anti-inflammatory and antimicrobial action.
  2,356 373 1
Diketopiperazine derivatives from Enterobacter cloacae isolated from the Red Sea alga Cystoseira myrica
Noha A Mohammed, Hossam M Hassan, Mostafa E Rateb, Eman F Ahmed, Usama W Hawas, Somayah Sameer, Rainer Ebel, Mounir M El-Safty, Mohammed S Abdel Hameed, Ola H Hammouda
July-December 2013, 12(2):163-172
Aim This study is an attempt to explore the biological activities of isolated endophytic bacteria from marine sources that were coded A1, A2, and A3 (Padina pavonica), A4 (Cystoseira myrica), A5 (Acanthophora dendroides), and A6 (Sargassum sabrepandum). The bacteria coded C1, C2, and C3 were isolated from the soft coral Nephthea mollis and S1 and S2 were isolates from the sponge Hymedesmia spp. The primary aim of the study was the identification of active compounds. Materials and methods The bioactive compounds were extracted using ethyl acetate from nutrient broth media; biological activities of the extracted metabolites and 16S rDNA identification of the most promising isolate were studied. The eight major fractions of the extract showed different composition patterns when identified by liquid chromatography/mass spectrometry analyses. Results and conclusion Agar diffusion assay showed inhibitory activities of A4 extracts against the growth of most pathogenic microorganisms. Identification using PCR 16S rDNA and electrophoresis confirmed 98% identity to the Enterobacter cloacae strain GH1 (ac: JF261136.1). Eight compounds out of fifteen in the extract were identified as diketopiperazine derivatives. The maximum growth of E. cloacae was obtained at 30°C, pH 7, with the addition of maltose and KI to the media. The free radical scavenging activity exhibited good antioxidant activity (72.19%, IC 50 = 1.266 mg/ml) on using 2.0 mg/ml of the crude extract. The extract showed a high antiviral activity towards Newcastle disease virus and avian influenza virus A(H5N1).
  2,453 203 2
Schistosomiasis ( chemoprophylaxis and treatments)
Magdy I El-Zahar, Somaia El-Karim
June 2012, 11(1):1-15

Schistosomiasis is a chronic parasitic disease affecting about 207 million individuals worldwide. It is still a major health problem in many tropical and subtropical countries, as well as for travelers from developed countries. The treatment strategies of schistosomiasis can be divided into two main routes: (a) chemotherapy treatment including trivalent antimony compounds, hycanthone mesylate, niridazole, metrifonate, oxamniquine, oltipraz, artemisinins, albendazole, amoscanate mirazid, and praziquantel; (b) vaccines that may play an important role in the control of schistosomiasis in the future.

  2,383 262 -
Potent anti-inflammatory and analgesic activities of new derivatives of chalcone, pyridine, pyrazole, and isoxazole incorporated into 5,6,7,8-tetrahydronaphthalene
Nehal A. Hamdy, Gehan M. Kamel
June 2012, 11(1):22-30

Synthesis of new series of 5,6,7,8-tetrahydronaphthalene derivatives conjugated with chalcone, pyridine, pyrazole and isoxazole functionalities hoping to circumvent the unwanted ulcerogenic and other side effects of the already used nonsteroidal anti-inflammatory drugs.


Most currently used nonsteroidal anti-inflammatory drugs (NSAIDs) suffer from limitation in their therapeutic uses, since they cause gastrointestinal and renal side effects related to inhibition of cyclooxygenase1 (Cox1) in tissues where prostaglandins exert physiological effects.


Reaction of 2-acetyl tetralin (1) with some aromatic aldehydes in the presence of malononitrile yielded 2-amino-3-cyanopyridine derivatives 2a–c. Condensation of compound 1 with aromatic aldehydes afforded the chalcone derivatives 3a–c. Then, compound 3a reacted with hydrazine hydrate or phenyl hydrazine and yielded pyrazoline derivatives 4 or 5, respectively. Also, the reaction of compound 3c with hydroxylamine hydrochloride afforded the isoxazole derivative 6. Anti-inflammatory properties of the synthesized compounds were evaluated in vivo utilizing formalin induced paw edema method in rats, analgesic activities were tested via both hot plate and writhing methods.


Derivatives 2c and 3c revealed promising results when the anti-inflammatory, analgesic, and ulcerogenic activities of the synthesized compounds were evaluated. All of the compounds induced significant central and peripheral analgesia. The derivatives 2a, 2c, 3a, 3b, 3c, 5, and 6 showed higher activity than the standard ibuprofen.

  2,165 357 -
Development and evaluation of taste-masked satranidazole granules by the polymer-coating technique
Harshal A Pawar, Pooja R Joshi, Pooja R Gharat, Damayanti Singh
July-December 2014, 13(2):87-94
Background and objective The objective of the present study was to mask the bitter taste of satranidazole and develop a formulation that is easy to swallow and provides quick relief in amoebiasis. Materials and methods Taste-masked granules were formulated by the wet granulation method and further coated by spraying a coating solution of Eudragit E100. Various batches of granules were prepared by coating with different concentrations of the coating solution. The formulated granules were evaluated for taste masking by in-vivo and in-vitro methods. The granules were tested for their flow property, in-vitro drug release, drug content, granular friability, and size distribution. Scanning electron microscopy of coated and uncoated granules was performed. The optimized batch was subjected to a stability study. The in-vitro release of the drug from granules was compared with that of the marketed tablet formulation. Results and conclusion The formulated granules were found to possess good flow property. Differential scanning calorimetry and Fourier-transform infrared studies confirmed no interaction between the drug and the excipients. The taste-masked granules of the optimized batch showed 99.21% release of the drug within 15 min. The in-vitro release of the drug from granules was found to be better than that of the marketed tablet formulation. The optimized granular formulation was found to be palatable and to provide quick relief in amoebiasis.
  1,649 857 -
Production and prebiotic activity of exopolysaccharides derived from some probiotics
Magdel-Din M Hussein, Mohamed F Ghaly, Mona Y Osman, Al Shimaa G Shalaby, Mohamed MI Helal
January-April 2015, 14(1):1-9
Objective The aim of this study was to focus on exopolysaccharides (EPSs) produced by Lactobacillus delbrueckii bulgaricus, Lactobacillus helveticus or Lactobacillus casei and their use as a prebiotic for Lactobacillus reuteri, Lactobacillus rhamnosus, Lactobacillus acidophilus or Bifidobacterium bifidum. Materials and methods Optimization of culture conditions using different carbon and nitrogen sources and different temperature, pH and incubation periods for maximum EPS production was studied. Results and conclusion It was found that the best conditions were as follows: the use of sucrose (20%) instead of glucose in MRS medium, incubation at pH 7.0 and temperature 37°C for 72 h incubation under anaerobic conditions to give the highest EPS yield; a yield of 13.99 g/l was recorded in case of L. helveticus when grown on the aforementioned optimized conditions. It was found that L. delbrueckii bulgaricus EPS has the highest prebiotic indices (I), varying from 7.9 to 10.1. In contrast, L. helveticus and L. casei EPSs have the lowest prebiotic indices (I), varying from 1.4 to 2.4.
  2,098 404 6
Synthesis and DPPH radical-scavenging effect of novel heterocyclic derivatives of 2-amino-4-(1-benzoylindol-3-yl)selenophene-3-carbonitrile
Eslam R El-Sawy, Heba M Abo-Salem, Manal Sh Ebaid, Abd El-Nasser El-Gendy, Adel H Mandour
July-December 2013, 12(2):120-129
Background and objectives Selenophene moiety is one of the heterocyclic compounds with a selenium atom that plays a vital role in biological fields such as antioxidant, antidepressant, anticonvulsant, antimicrobial, and anticancer activities. The aim of this study was to describe the synthesis of some new heterocycles derived from 2-amino-4-(1-benzoylindol-3-yl)selenophene-3-carbonitrile derivatives and to evaluate their 2,2Ͳ-diphenyl-1-picrylhydrazyl radical-scavenging activity. Materials and methods 2-Amino-4-(1-benzoylindol-3-yl)selenophene-3-carbonitrile ( 3 ) was prepared and allowed to react with each of formic acid, formamide, carbon disulfide, urea, thiourea, malononitrile, or ethyl cyanoacetate to yield selenolo[2,3-d]pyrimidines 4-7 and selenolo[2,3-b]pyridine derivatives 8 and 9 , respectively. Moreover, reaction of compound 3 with hydrochloric acid or acetic anhydride in glacial acetic acid yielded selenolo[2,3-d]pyrimidin-4-one 10 and selenoacetamide derivative 11 , respectively. In contrast, reaction of Schiff base 12 with thioglycolic acid, phenacyl bromide, or chloroacetyl chloride yielded thiazolidine 13 and azidatine derivatives 14 and 15 , respectively. Reaction of compound 3 with some substituted benzenesulfonyl chlorides yielded sulfonamide derivatives 16a, b, c , respectively. Moreover, 2-amino-1,3,4-thiadiazole 19 and 4-oxo-2-iminothiazolidine derivatives 21 were prepared through cyclization of hydrazinecarbothioamide 18 or chloroacetamido derivative 20, respectively. The fusion of 3 with succinic anhydride yielded pyrrolidine-2,5-dione 23 , whereas heating of 3 with succinic anhydride in ethanol yielded succinamic acid derivative 24 . The newly synthesized compounds were screened for their 2,2Ͳ-diphenyl-1-picrylhydrazyl radical-scavenging activity. Results and conclusion Compound 8 showed promising activity with a radical-scavenging effect (IC 50 ) of 166.40 μg/ml compared with ascorbic acid (an IC 50 of 129.64 μg/ml) as a reference standard.
  1,871 356 -
Valsartan augments the beneficial effect of rosuvastatin with respect to lipid profile, oxidative stress, and the nitric oxide pathway in high-fat diet-induced hypercholesterolemic rats
Omnia E Baheg, Yousreya A Maklad, Amina Gamal El Din, Manal A Badawy, Sanaa A Kenawy
January-June 2014, 13(1):33-45
Background The renin-angiotensin system contributes considerably to a variety of cardiovascular diseases and is the target of angiotensin receptor blockers (ARBs). Recent studies have reported that in experimental models, as well as some human studies, ARBs had shown the ability to affect lipid metabolism in a modest but significant way. In addition to their primary mode of action, statins and ARBs have common additional properties such as restoration of endothelial activity and antioxidant properties. These properties may potentially aid the improvement treatment of cardiovascular disease. Objective The present study was designed to evaluate the possible beneficial effects of both therapies valsartan (ARB) and rosuvastatin (3-hydroxy-methylglutaryl coenzyme reductase inhibitor) beyond their blood pressure-lowering and cholesterol-lowering effects, and the possibility that valsartan may enhance the beneficial effects of rosuvastatin in high-fat diet-induced hypercholesterolemic (HC) rats with respect to lipid profile, oxidative stress, and the nitric oxide pathway. Materials and methods HC was induced in male albino Wistar rats by a daily gavage of a cocktail containing 1 l peanut oil, 100 g cholesterol, and 100 g cholic acid over a period of 21 days. These animals were assigned randomly to the following groups: HC, HC/rosuvastatin, HC/valsartan, and HC/rosuvastatin+valsartan. Results Daily gavage of the cocktail for 3 weeks induced a significant increase in plasma total cholesterol (TC), triglyceride (TG), and low-density lipoprotein and a significant reduction in high-density lipoprotein (HDL), but did not induce any significant changes in arterial blood pressure and heart rate. Meanwhile, the plasma nitric oxide level was reduced to 17.49% of its normal level and the plasma malondialdehyde level was significantly increased by 32.53%. Coadministration of valsartan with rosuvastatin normalized plasma HDL, significantly decreased plasma TC and low-density lipoprotein to a greater extent than monotherapy with each drug as well as ameliorated the effect of HC diet on the plasma TG level in HC rats. Moreover, the combined treatment induced a significant increase in the plasma nitrate+nitrite level compared with the corresponding HC value and normalized the plasma malondialdehyde level with respect to the effect of rosuvastatin or valsartan alone. In addition, histopathological and morphometric studies of the aorta and liver showed marked improvement after combined treatment with rosuvastatin and valsartan when compared with the HC group. Conclusion Conclusively, coadministration of rosuvastatin and valsartan in high-fat diet-induced HC rats conferred a greater degree of protection as it ameliorated the increase in the plasma TC and TG and restored HDL to its normal value, improved the endothelial function, and reduced oxidative stress, together with improvement in the histopathological features in rats that had previously received a high-fat diet.
  1,935 237 -
Estimation of total phenolic, tannins, and flavonoid contents and antioxidant activity of Cedrus deodara heart wood extracts
Sourabh Jain, Aakanchha Jain, Sanjay Jain, Neelesh Malviya, Vikas Jain, Dharmendar Kumar
January-April 2015, 14(1):10-14
Purpose The present study was investigated to determine in-vitro antioxidant activity and total phenolic, total flavonoids, and total tannins contents of extracts of Cedrus deodara heart wood. Materials and methods Antioxidant activity of aqueous and alcoholic extract of C. deodara heart wood was evaluated against 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 1,1-diphenyl-2-picryl hydrazyl (DPPH), and hydroxyl radical-scavenging activity models. Total flavonoids, tannins, and phenolic content of C. deodara were also determined. Results and conclusion Among both extracts, aqueous extract showed the highest total phenolic contents (23.97 μg/g of gallic acid equivalent/g of extract). In DPPH, superoxide anion, and ABTS scavenging test, the IC 50 (μg/ml) value of aqueous and alcoholic extract was 61.89, 75.79, 87.76, 121.55, 115.29, and 122.42, respectively. Hence, the above evidences suggest that C. deodara heart wood is a potential source of natural antioxidant and can be used to prevent diseases associated with free radicals.
  1,812 300 1